Baltimore Tree species in a changing climate: Generating a list of climate-informed tree species projections for the GBWC

Agenda

- Who we are and what we do
- Tools that can help for Baltimore
 - Tree Atlas
 - Heat and Hardiness Zone data

Northern Institute of Applied Climate Science

The Northern Institute of Applied Climate Science (NIACS) develops synthesis products, fosters communication, pursues science, and provides technical assistance in climate change adaptation and carbon management.

Multi-institutional collaborative chartered by USDA Forest Service, universities, and non-profit and tribal conservation organizations

Climate Change Response Framework

4 COMPONENTS:

We create practical tools you can use!

ForestAdaptation.org/Mid-Atlantic

Representative Concentration Pathways (RCPs)

Tools to inform Baltimore tree planting

USFS Tree Atlas Baltimore, MD

Heat & Hardiness Zones Washington, DC

CLIMATE CHANGE VULNERABILITY OF URBAN TREES

This list was developed to aid Washington, D.C. community forestry practitioners in selecting trees to reduce climate change vulnerability of their urban forests. It is meant to be a complement to other tree selection resources. Other factors may also need to be considered, such as aesthetics, local site conditions, wildlife value, or nursery availability. It is also important to note that some species may have climate benefits but may not be suitable for planning for other reasons, such as having invasive potential or susceptibility to pests or pathogens.

Vulnerability: Trees can be vulnerable to a variety of climate-related stressors such as intense heat, drought, flooding, and changing pest and disease patterns. Climate vulnerability is a function of the impacts of

climate change on a species and its adaptive capacity. Species with negative impacts on habitat suitability and low adaptive capacity will have high vulnerability and vice versa. The following factors were used to determine climate vulnerability:

Urban adaptability: Adaptability scores were generated for each species based on iterature describing its tenance to disturbances such as drought, flooding, pest, and diseate, as well as its growth requirements such as shade tolerance, soil needs, and ease of nursery propagation. Scores were assigned to species using methods developed in a nurban forest unlerability assessment for Chicago for tress planted in developed sites. A positive score indicates that a species is tolerant to a wide range of disturbances and can be planted on a variety of sites. A negative score indicates a species is highly susceptible to disturbances and/or is limited to specific planting sites.

Hardiness and heat zone suitability: Tree species ranges were recorded from government, university, and arboretum websites. Species tolerance ranges were compared to current and projected heat and hardiness zones for Washington, D.C. using downscaled climate models under low emissions (RCP 4.5) and high emissions (RCP 8.5) scenarios for changes in greenhouse gases. Trees were considered to have suitable zone suitability if the species' tolerance was within the range of current and projected hardiness and heat zone through the end of the 21st century.

NOTE: This list was primarily created for species planted in developed sites, such as streets, yards, boulevards, and parks. If you are interested in projected changes in habitat suitability for native species in natural areas, see the Climate Change Tree Aflas at <u>www.sfs.fed.us/nrs/atlas/</u>.

Current and projected USDA Hardiness Zones and AHS Heat Zones for Washington, D.C. Hardiness zone is determined by the average lowest temperature over a 30 year period. Heat zones are determined by the number of days above 86%.

 Time Period
 Hardliness Zone Range
 Heat Zone Range

 1980-2010
 7
 7
 7

 2010-2039
 7
 8
 7 to 8
 8

 2000-2069
 7 to 8
 8
 9
 9

 2000-2069
 7 to 8
 8
 9
 9
 10

Climate Change Tree Atlas: About

- A tool used to describe tree habitat distribution and colonization under changed climate.
- Model results for 125 species (and relative abundance for 24 species)
- Information about colonization potential (SHIFT) and overall ability to tolerate future conditions (Capability)
- New tutorials and explanations throughout the site.

Regional Summary Tree Tables

Current and Potential Future Habitat, Capability, and Migration

Summaries for tree species are available for a variety of geographies, in both PDF and Excel format. These summaries are based on <u>Version 4 of the Climate Change Tree Atlas</u>

- <u>National Forest Summaries</u>
- <u>National Park Summaries</u>
- HUC6 Watersheds
- <u>Ecoregional Vulnerability Assessments (EVAS)</u>
- USDA Forest Service EcoMap 2007 Sections

Other Products

Story Map: Drought Over Time

Story Map: Climate Change Pressures in the 21st Century: Shifts in Growing Degree Days, Plant Hardiness Zones, and Heat Zones

www.fs.fed.us/nrs/atlas

- <u>National Climate Assessment (NCA) 2016 Regional</u>
 Summaries
- 1 x 1 ° Grid Summaries
- Eastern United States
- Urban Areas

Climate Change Tree Atlas: Baltimore

Results describe trends across the greater Baltimore area

- Urban area (sq. km) = 1,922
- Urban buffer area (sq. km) = 9,137
 - 90 tree species modeled
 - 22% urban land cover

Rare, nonnative, or cultivar species are likely not modeled.

 These species may have vulnerability ratings based on projected heat and hardiness zones.

www.fs.fed.us/nrs/atlas/combined/resources/summaries/urban/

Climate Change Tree Atlas: Baltimore

- Common and scientific names
- Range
- Model reliability
- FIA sum
- Habitat change class
- Adaptability
- Capability
- SHIFT

	• ಶ ್ ∂ - ∓					Table Tools		ua	_04843.xlsx - Exc	el					
File	Home Insert Page L	ayout Formul	as Data R	Review View	Help Ac	robat Design 🖓 Te	ll me what you wa	nt to do							
P	🔏 Cut Calibri	* 11 · *	= =	= ≫ - ệb	Wrap Text	General	•		Normal	Bad	Good 1	Neutral C	alculation		
Paste	B I U		- <u>A</u> - ≡ ≡	= = = =	Merge & Cent	ter - \$ - % , 50	00 Conditional	Format as	Check Cell	Explanatory	Followed Hy	Hyperlink Ir	iput 💡	Insert Delete Fo	ormat
Ť	Clipboard G	Font	- G	Alignment	t	5 Number	Formatting *	Table *		Styl	es			Cells	*
F19	• : × < :	fx 91.61													
	Scientific Name	Range	- MR -	%Cell 🖵 F	IAsum 🗔 I	FIAiv ChngCl45	ChngCl85	Adap	- Abund	 Capabil45 	- Capabil85	→ SHIFT45	→ SHIFT85		N 🔽
14	Quercus rubra	WDH	Medium	37.1	117.6	6.5 No change	No change	High	Common	Good	Good	Infill ++	Infill ++	1	13
15	Quercus coccinea	WDL	Medium	27.6	113.9	6.8 Sm. dec.	Sm. dec.	Medium	n Common	Fair	Fair	Infill +	Infill +	1	14
16	Carya glabra	WDL	Medium	31.4	112.2	6.9 No change	No change	Medium	n Common	Good	Good	Infill ++	Infill ++	1	15
17	Fraxinus americana	WDL	Medium	25.6	104.4	7.7 No change	No change	Low	Common	Good	Good	Infill ++	Infill ++	1	16
18	Sassafras albidum	WSL	Low	35.9	100.5	5.0 Lg. dec.	Sm. dec.	Medium	n Common	Fair	Fair	Infill +	Infill +	1	17
19	Juglans nigra	WDH	Low	20.4	91.6	6.8 Sm. dec.	Sm. dec.	Medium	n Common	Fair	Fair	Infill +	Infill +	1	18
20	Pinus taeda	WDH	High	12.7	84.5	15.7 Lg. inc.	Lg. inc.	Medium	n Common	Very Good	Very Good	Infill ++	Infill ++	2	19
21	Platanus occidentalis	NSL	Low	16	81.1	9.5 Sm. inc.	Sm. inc.	Medium	n Common	Very Good	Very Good	Infill ++	Infill ++	2	20
22	Acer negundo	WSH	Low	19.5	77.2	6.0 No change	No change	High	Common	Good	Good	Infill ++	Infill ++	1	21
23	Populus deltoides	NSH	Low	2.8	68.6	28.0 Sm. dec.	Sm. dec.	Medium	n Common	Fair	Fair			0	22
24	Picea abies	NSH	FIA	1.1	61.3	50.0 Unknown	Unknown	NA	Common	NNIS	NNIS			0	23
25	Quercus pagoda	NSL	Medium	1	61.3	45.9 No change	No change	Medium	n Common	Good	Good			2	24
26	Pinus strobus	WDH	High	1.1	44.9	36.7 Lg. dec.	Lg. dec.	Low	Rare	Poor	Poor			0	25
27	Ulmus rubra	WSL	Low	3.4	42.0	11.4 Sm. dec.	No change	Medium	n Rare	Poor	Fair	Infill +	Infill +	2	26
28	Quercus falcata	WDL	Medium	12.5	37.4	6.6 Lg. inc.	Lg. inc.	High	Rare	Good	Good	Infill ++	Infill ++	2	27
29	Acer saccharinum	NSH	Low	6.8	35.0	13.9 Sm. dec.	No change	High	Rare	Poor	Fair		Infill +	2	28
30	Quercus palustris	NSH	Low	4.5	33.8	6.9 Sm. dec.	Sm. dec.	Low	Rare	Poor	Poor	Infill +	Infill +	2	29
31	Ailanthus altissima	NSL	FIA	8	31.4	6.5 Unknown	Unknown	NA	Rare	NNIS	NNIS			0	30
32	Carya cordiformis	WSL	Low	6.6	29.6	7.2 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2	31
33	Ulmus americana	WDH	Medium	15.8	24.3	7.7 Sm. inc.	Lg. inc.	Medium	n Rare	Good	Good			2	32
34	Cornus florida	WDL	Medium	16.6	19.5	1.6 Sm. inc.	Sm. inc.	Medium	n Rare	Good	Good	Infill ++	Infill ++	1	33
35	Carpinus caroliniana	WSL	Low	7.4	19.1	2.6 Sm. inc.	Sm. inc.	Medium	n Rare	Good	Good	Infill ++	Infill ++	1	34
36	Fraxinus pennsylvanica	WSH	Low	4	18.7	5.2 Sm. inc.	Sm. inc.	Medium	n Rare	Good	Good			2	35
37	Quercus phellos	NSL	Low	3.8	16.6	4.5 Sm. inc.	Sm. inc.	Medium	Rare	Good	Good			2	36
38	Acer platanoides	NSL	FIA	7.9	14.1	3.9 Unknown	Unknown	NA	Rare	NNIS	NNIS			0	37
39	Quercus imbricaria	NDH	Medium	2.3	12.7	5.2 Sm. dec.	Sm. dec.	Medium	Rare	Poor	Poor			0	38
40	Morus alba	NSL	FIA	10.4	10.7	5.5 Unknown	Unknown	NA	Rare	NNIS	NNIS			0	39
41	Asimina triloba	NSL	Low	6.4	9.8	2.8 Sm. dec.	Lg. dec.	Medium	Rare	Poor	Poor			0	40
42	Ilex opaca	NSL	Medium	13.1	9.0	2.4 Lg. inc.	Lg. inc.	Medium	Rare	Good	Good	Infill ++	Infill ++	1	41

www.fs.fed.us/nrs/atlas/combined/resources/summaries/urban/

Climate Change Tree Atlas: Results for Greater Baltimore

CLIMATE CHANGE PROJECTIONS FOR INDIVIDUAL TREE SPECIES **GREATER BALTIMORE, MARYLAND**

This list was developed to aid Greater Baltimore community forestry practitioners in selecting trees to reduce climate change vulnerability of their urban forests. It is meant to be a complement to other tree selection resources. Other factors may also need to e considered, such as aesthetics, local site conditions wildlife value or nursery availability. It is also important to note

that some species may have climate benefits but may not be suitable for planting for other reasons, such as having invasive potential or susceptibility to pests or pathogens

The Landscape Change Research Group recently updated the Climate Change Tree Atlas, and this handout summarizes information for the Greater Baltimore region. Full Tree Atlas results are available online at www.fs.fed.us/nrs/atlas/. Two climate scenarios are presented to "bracket" a range of possible futures. These future climate projections (2070 to 2099) provide information about how individual tree species may respond to a changing climate. Results for "low" and "high" emissions scenarios can be compared on the reverse side of this handout.

The updated Tree Atlas presents additional information helpful to interpret tree species changes:

- Suitable habitat calculated based on 39 variables that explain where optimum conditions exist for a species, including soils, landforms, and climate variables.
- Adaptability based on life-history traits that might increase or decrease tolerance of expected changes, such as the ability to withstand different forms of disturbance.
- · Capability a rating of the species' ability to cope or persist with climate change in this region based on suitable habitat change (statistical modeling), adaptability (literature review and expert opinion), and abundance (FIA data). The capability rating is modified by abundance information; ratings are downgraded for rare species and upgraded for abundant species
- Migration Potential Model when combined with habitat suitability, an estimate of a species' colonization likelihood for new habitats. This rating can be helpful for assisted migration or focused management (see the table section: "New Habitat with Migration Potential").

Remember that models are just tools and they're not perfect. Model projections can't account for all factors that influence future species success. If a species is rare or confined to a small area, model results may be less reliable. These factors, and others, could cause a particular species to perform better or worse than a model projects. Human choices will also continue to influence forest distribution, especially for tree species that are projected to increase. Despite these limits, models provide useful information about future expectations. It's perhaps best to think of these projections as indicators of possibility and potential change.

SOURCE: This handout summarizes model results for the Greater Baltimore, Maryland area, available at https://www.fs.fed.us/nrs/atlas/combined/resources/summaries/urban/ ua 04843.xlsx. More information on vulnerability and adaptation in the Mid-Atlantic region can be found at <u>www.forestadaptation.org/mid-atlantic</u>, A full description of the models and variables are provided in Iverson et al. 2019 (www.nrs.fs.fed.us/pubs/57857 and <u>www.nrs.fs.fed</u>. us/pubs/59105) and Peters et al. 2019 (www.nrs.fs.fed.us/pubs/58353).

CLIMATE CHANGE CAPAI	BILITY
POOR CAPABILITY	
Bigtooth aspen	Pin oak
Black ash	Quaking aspen
Eastern white pine	Shingle oak
Pawpaw	Swamp white oak
FAIR CAPABILITY	
American beech	Eastern cottonwood
Bitternut hickory	Red mulberry
Black locust	Sassafras
Black walnut	Scarlet oak
Chestnut oak	Virginia pine
GOOD CAPABILITY	
American elm	Northern red oak
American holly	Pignut hickory
American hornbeam	Red maple
Black cherry	Shagbark hickory
Black oak	Southern red oak
Blackgum	Sugar maple
Boxelder	Swamp chestnut oak
Cherrybark oak	Sweetbay
Eastern hophornbeam	Sweetgum
Eastern redcedar	Sycamore
Flowering dogwood	White ash
Green ash	White oak
Hackberry	Willow oak
Loblolly pine	Yellow Poplar
Mockernut hickory	
MIXED RESULTS	
Silver maple	Common persimmon
Slippery elm	Black willow
NEW HABITAT WITH MIG	RATION POTENTIAL
Bald cypress	River birch
Blackjack oak	Shortleaf pine
Eastern redbud	Sourwood
Laurel oak	Sugarberry
Longleaf pine	Swamp tupelo
Overcup oak	Water oak

Water tupelo

Winged elm

NIACS

www.forestadaptation.org

Pond cypress

Post oak

Redbay

ADAPTABILITY: Life-history factors, such as the ability to respond favorably to disturbance, that are not included in the Tree Atlas model and may make a species more or less able to adapt to future stressors

- + HIGH Species may perform better than modeled
- MEDIUM
- I OW Species may perform worse than modeled
- between current and notential future conditions ▲ INCREASE Projected increase of >20% by 2100
- DECREASE Projected * NEW HABITAT Tree Atlas decrease of >20% by 2100 projects new habitat for
 - species not currently present

Importance Value data, calibrated to a standard geographic area. + ABUNDANT

ABUNDANCE: Based on Forest Inventory Analysis (FIA) summed

CAPABILITY: An overall rating that describes a species' ability

to cope or persist with climate change based on suitable habitat

change class (statistical modeling), adaptability (literature review

 COMMON - RARE

HABITAT CHANGE: Projected change in suitable habitat

- and expert opinion), and abundance within this region. △ GOOD Increasing suitable habitat, medium or high adaptability NO CHANGE Projected change of <20% by 2100 and common or abundant
 - FAIR Mixed combinations, such as a rare species with increasing suitable habitat and medium adaptability
 - POOR Decreasing suitable habitat, medium or low adaptability, and uncommon or rare

			CHANGE (IMATE (RCP 4.5	5) CHANGE	(RCP 8.5)				CHANGE	IMATE RCP 4.5	HIGH C CHANGE	(RCP 8.
		-	HABITAT O	APABI	L-HABITAT	CAPABIL-				HABITAT (APABIL	- HABITAT	CAPAB
SPECIES	ADAPI	ABUN	CHANGE	ITY	CHANGE	ITY	SPECIES	ADAPT	ABUN	I CHANGE	ITY	CHANGE	ITY
American beech	•		•		•		Pignut hickory		•	•	Δ	•	Δ
American elm	•	-		Δ		Δ	Pin oak*	-	-	•	∇	•	∇
American holly		-		Δ		Δ	Pond cypress			*		*	
American hornbeam*	•	-	A	Δ	A	Δ	Post oak	+		*		*	
Bald cypress	•		*		*		Quaking aspen		-	•	∇	•	∇
Bigtooth aspen	•	-	•	∇	•	∇	Red maple	+	+	•	Δ	•	Δ
Bitternut hickory*	+	-	•		•		Red mulberry*		-	•		•	
Black ash	-	-	•	∇	•	∇	Redbay*	+		*		*	
Black cherry	-		•	Δ	•	Δ	River birch*			*		*	
Black locust*	•		•		•		Sassafras*	•	•	•		•	
Black oak	•			Δ		Δ	Scarlet oak		•	•		•	
Black walnut*	•		•		•		Shagbark hickory	•	-	A	Δ	A	
Black willow*	-	-	•			Δ	Shingle oak		-	•	∇	•	∇
Blackgum	+	•	•	Δ		Δ	Shortleaf pine	•		*		*	
Blackjack oak	+		*		*		Silver maple*	+	-	•	∇	•	
Boxelder*	+		•	Δ	•	Δ	Slippery elm*		-	•	∇	•	
Cherrybark oak	•		٠	Δ	•	Δ	Sourwood	+		*		*	
Chestnut oak	+		•		•		Southern red oak	+	-		Δ		Δ
Common persimmon*	+	-	•			Δ	Sugar maple	+	-		Δ		Δ
Eastern cottonwood*	•		•		•		Sugarberry			*		*	
Eastern hophornbeam*	+	-		Δ		Δ	Swamp chestnut oak	• •	-		Δ		Δ
Eastern redbud*			*		*		Swamp tupelo	-		*		*	
Eastern redcedar	•	-	A	Δ		Δ	Swamp white oak*	•	-	•	V	•	V
Eastern white pine	-	-	•	∇	•	∇	Sweetbay		-		Δ		Δ
Flowering dogwood	•	-		Δ		Δ	Sweetgum		•		Δ		Δ
Green ash*		-		Δ		Δ	Sycamore*				Δ		Δ
Hackberry	+	-		Δ		Δ	Virginia pine			•		•	
Laurel oak			*		*		Water oak						
Loblolly pine	•			Δ		Δ	Water tupelo	_					
Longleaf pine	•		*		*		White ash	-				~	
Mockernut hickory	+			Δ		Δ	White oak	+			R	ser '	~ 2,
Northern red oak	+		•	Δ	•	Δ	Willow oak*		_	1 1	5		3

Winged elm

Yellow Poplar

+

Creater

atlas/combined/resources/summaries).

forestadaptation.org/baltimore

Overcup oak

[.] Pawpaw* *Species with low model reliability based on five statistical metrics of the habitat models that affect change class. See maps and tables for more information (www.fs.fed.us/nrs/

Climate Change Tree Atlas: Results for Greater Baltimore

POOR CAPABILITY	
Bigtooth aspen	Pin oak
Black ash	Quaking aspen
Eastern white pine	Shingle oak
Pawpaw	Swamp white oak

FAIR CAPABILITY	
American beech	Eastern cottonwood
Bitternut hickory	Red mulberry
Black locust	Sassafras
Black walnut	Scarlet oak
Chestnut oak	Virginia pine

	<u> </u>
GOOD CAPABILITY	
American elm	Northern red oak
American holly	Pignut hickory
American hornbeam	Red maple
Black cherry	Shagbark hickory
Black oak	Southern red oak
Blackgum	Sugar maple
Boxelder	Swamp chestnut oak
Cherrybark oak	Sweetbay
Eastern hophornbeam	Sweetgum
Eastern redcedar	Sycamore
Flowering dogwood	White ash
Green ash	White oak
Hackberry	Willow oak
Loblolly pine	Yellow Poplar
Mockernut hickory	

MIXED RESULTS	,
Silver maple	Common persimmon
Slippery elm	Black willow

NEW HABITAT WITH MIG	RATION POTENTIAL
Bald cypress	River birch
Blackjack oak	Shortleaf pine
Eastern redbud	Sourwood
Laurel oak	Sugarberry
Longleaf pine	Swamp tupelo
Overcup oak	Water oak
Pond cypress	Water tupelo
Post oak	Winged elm
Redbay	

forestadaptation.org/baltimore

Tools to inform Baltimore tree planting

USFS Tree Atlas Baltimore, MD

Heat & Hardiness Zones Washington, DC

CLIMATE CHANGE VULNERABILITY OF URBAN TREES

This list was developed to aid Washington, D.C. community forestry practitioners in selecting trees to reduce climate change vulnerability of their urban forests. It is meant to be a complement to other tree selection resources. Other factors may also need to be considered, such as aesthetics, local alte conditions, wildfife value, or nursery availability. It is also important to note that some species may have climate benefits but may not be suitable for planting for other reasons, such as having invasive potential or susceptibility to pests or pathogens.

Vulnerability: Trees can be vulnerable to a variety of climate-related stressors such as intense heat, drought, flooding, and changing pest and disease patterns. Climate vulnerability is a function of the impacts of monathie impact on habitat suitability and low adjustion adjustment on habitat suitability and low adjustment of the suitability of the suitability of the subscription of the suitability of the suitability of the subscription of the suitability of the suitability of the subscription of the suitability of the suitability of the subscription of the s

climate change on a species and its adaptive capacity. Species with negative impacts on habitat suitability and low adaptive capacity will have high vulnerability and vice versa. The following factors were used to determine climate vulnerability:

Urban adaptability: Adaptability scores were generated for each species based on iterature describing its tenance to disturbances such as drought, flooding, pest, and diseate, as well as its growth requirements such as shade tolerance, soil needs, and ease of nursery propagation. Scores were assigned to species using methods developed in a nurban forest unlerability assessment for Chicago for tress planted in developed sites. A positive score indicates that a species is tolerant to a wide range of disturbances and can be planted on a variety of sites. A negative score indicates a species is highly susceptible to disturbances and/or is limited to specific planting sites.

Hardiness and heat zone suitability: The species ranges were recorded from government, university, and aboretum websites. Species tolerance ranges were compared to current and projected heat and hardiness zones for Washington, D.C. using downscaled climate models under low emissions (RCP 4.5) and high emissions (RCP 4.5) scenarios for changes in greenhouse gases. Trees were considered to have suitabile zone suitability if the species' tolerance was within the range of current and projected hardiness and heat zone through the end of the 21st century.

NOTE: This list was primarily created for species planted in developed sites, such as streets, yards, boulevards, and parks. If you are interested in projected changes in habitat suitability for native species in natural areas, see the Climate Change Tree Aflas at <u>www.fsed.scinz.id.tal.</u>./

Current and projected USDA Hardiness Zones and AHS Heat Zones for Washington, D.C. Hardiness zone is determined by the average lowest temperature over a 30 year period. Heat zones are determined by the number of days above 86%.

 Time Period
 Hardiness Zone Range
 Heat Zone Range

 1960-2010
 7
 7

 Low Emissions
 Low Emissions
 High Emissions

 2010-2039
 7
 8
 7 to 8

 2040-2069
 7 to 8
 8
 9

 2010-2039
 8
 8 to 9
 8
 9 to 10

Tree species projections (simplistic):

Tree characteristics

Climate informed habitat projections

Disturbance Factors

Tolerance to: Pests, diseases, drought, flood, wind, ice, salt, air and urban pollution, heat, browsing, invasive species

Biological Factors

Shade tolerance, edaphic specificity, invasive potential, habitat specificity, nursery propagation, maintenance required, planting establishment, restricted rooting conditions

forestadaptation.org/washington-dc

Tree species projections (simplistic):

Tree characteristics

Adaptive capacity scoring

Climate informed habitat projections

Eastern hemlock

forestadaptation.org/washington-dc

How do we determine vulnerability of individual trees? Adaptive Capacity Scoring

Example of Planted Modification Factor Scores Generated for the Species **Eastern hemlock**.

This image is available on the Tree Atlas website!

Matthews, S. N., Iverson, L. R., Prasad, A. M., Peters, M. P., & Rodewald, P. G. (2011). Modifying climate change habitat models using tree species-specific assessments of model uncertainty and life history factors. Forest Ecology and Management, 262, 1460-1472.

How do we determine vulnerability of individual trees? Adaptive Capacity Scoring

Example of Planted Modification Factor Scores Generated for the Species **Boxelder**.

Matthews, S. N., Iverson, L. R., Prasad, A. M., Peters, M. P., & Rodewald, P. G. (2011). Modifying climate change habitat models using tree species-specific assessments of model uncertainty and life history factors. Forest Ecology and Management, 262, 1460-1472.

Factor Type	ModFactor		Uncert	FutureRelevance	Weighted	
Disturbance	Disease		0.75	2	-1.50	
Disturbance	Insect Pests		0.5	5	-7.50	
Disturbance	Browse	-1	0.75	1	-0.75	
Disturbance	Invasive Plants	0	0.5	2	0.00	
Disturbance	Drought	3	0.75	3	6.75	
Disturbance	Flood	2	0.75	3	4.50	
Disturbance	lce	-1	0.5	2	-1.00	
Disturbance	Wind	-1	0.75	2	-1.50	
Disturbance	Salt	1	0.5	1	0.50	
Disturbance	Temperature Gradients	3	0.75	3	6.75	
Disturbance	Air Pollution	-2	0.75	3	-4.50	
Disturbance	Soil & Water Pollution	-2	0.5	1	-1.00	
Biological	Competition-Light	2	0.5	1	1.00	
Biological	Edaphic Specificity	2	0.75	2	3.00	
Biological	Land Use & Planting Site Specificity	1	0.75	3	2.25	
Biological	Restricted Rooting Conditions	1	0.75	3	2.25	
Biological	Nursery Propagation	-1	0.75	4	-3.00	
Biological	Planting Establishment	2	0.75	2	3.00	
Biological	Maintenance Required	-1	0.75	2	-1.50	
Biological	Invasive Potential	-3	0.75	3	-6.75	
	Adapt Score				4.41	
	Adapt Class				Medium	

Tree species projections (simplistic):

Tree characteristics

Adaptive capacity scoring

+ Future heat zone and hardiness zone projections

Climate informed habitat projections

High Climate Change Scenario (RCP 8.5)

Time Period	Hardiness 2	Zone Range	Heat Zone Range					
1980-2010	1	7	7					
	Low Emissions	High Emissions	Low Emissions	High Emissions				
2010-2039	7	8	7 to 8	8				
2040-2069	7 to 8	8	8	9				
2070-2099	8	8 to 9	8	9 to 10				

Current and projected USDA Hardiness Zones and AHS Heat Zones for Washington, D.C. Hardiness zone is determined by the average lowest temperature over a 30 year period. Heat zones are determined by the number of days above 86°F.

forestadaptation.org/washington-dc

Tree species projections (simplistic):

Tree characteristics

Additional vulnerability considerations

+ Future heat zone and hardiness zone projections

Climate informed habitat projections

ZONE SUITABILITY: VULNERABILITY:

Suitable

× Not Suitable

- Low: Suitable zone, high adaptability
 - Low-moderate: Suitable zone, medium adaptability
- Moderate- high: Zone not suitable, medium adaptability
- **High:** Zone not suitable, low adaptability
- *Moderate:* Suitable zone, low adaptability or zone not suitable, high adaptability

Potential Impacts

forestadaptation.org/washington-dc

*Invasive species

URBAN ADAPTABILITY:	ZONE SUITABILITY:	٧	ULNERABILITY:		
+ High: Species may perform better than modeled	+ High: Species may perform Suitable better than modeled Not Suitable 		Low: Suitable zone, high adaptability	0	Moderate- high: Zone not suitable, medium adaptability
 Medium Low: Species may perform 		•	 Low-moderate: Suitable zone, medium adaptability 	Δ	High: Zone not suitable, low adaptability
worse than modeled			Moderate: Suitable zone, low add	ility or zone not suitable, high adaptability	

LOW EMISSIONS HIGH EMISSIONS LOW EMISSIONS HIGH EMISSIONS ZONE ZONE ZONE ZONE COMMON NAME ADAPT SUIT VULN SUIT VULN COMMON NAME ADAPT SUIT VULN SUIT VULN Alleghany serviceberry θ Honeylocust* ~ 0 + • • х ٠ х American linden, Basswood 0 • • × Ironwood . . ٠ + -• Japanese flowering cherry American sweetgum, fruitless • Δ Δ х × + . ~ -Japanese pagoda tree 0 American beech ٠ ۲ ٠ х American elm ٠ Japanese tree lilac × θ × θ • ۰ -+ . Japanese zelkova • θ American sycamore ٠ х • ٠ -+ . . θ • • Amur corktree* х Θ х Jefferson elm + + . Image: A set of the θ Amur maackia х θ × Katsura tree θ × Δ + -_ • Amur maple* Kentucky coffeetree х 0 х 0 X θ + -. Bald cypress . • Kousa dogwood • θ + -. + -× Bipinnate goldenrain tree • • Lacebark elm ▼ • -• + • + • Black alder 0 Littleleaf linden θ х 0 × х θ X + . London planetree 0 Black locust ۰ х 0 ۲ х . . ٠ . • • Black oak 0 Musclewood ۰ х + -. < -Black tupelo, Black gum • Image: A set of the • New Harmony elm • Image: A second s • + . + -Black walnut θ Northern red oak • θ . θ Image: A set of the + х _ Blackjack oak θ Northern white cedar, Arborvitae 0 θ х 0 X _ . Image: A set of the Boxelder х 0 х θ х θ ۰ Norway maple* . + .

More information: forestadaptation.org/washington-dc

Tree species projections can be used to:

- Understand the overall vulnerability of the region's urban forest (developed using tree inventories)
- Used as a tool to help inform decisionmaking
- Integrate into adaptation projects to support approaches & tactics

Tree Species Vulnerability

CLIMATE CHANGE

ESPONSE FRAMEWORK

Species distribution modeling suggests that the changing climate will shift suitable habitat and heat and hardiness zones for various tree species in the capital region. The city's urban forest fortunately includes many native species that are projected to do well or at least survive, even in higher emissions scenarios. The city also has unique considerations, like historical and aesthetic species that may be particularly vulnerable, such as the elms lining the National Mall, which Durch Elm disease only through regular inoculation. Climate change vulnerability of urban trees, including adaptive capacity and zone suitability under low and high emissions scenarios, is outlined in the tree species handout below.

B WashingtonDC TreeSpeciesVulnerability.pdf (296.58 KB)

Washington D.C. Taft Bridge. Source: Flickr, KCIvey.

Climate Change Impacts

The capital is situated on the confluence of the Potomac and Anacostia rivers, near the Potomac's mouth on the Chesapeake Bay, making the city's waters titadia, and subject to a projected 2-5 feet of sea level increase by century's end. The region has already seen an increase of precipitation, particularly in acute events, which have led to damaging floods. Known for its hot and humid summers, Washington D.C. is likely to experience three times as many dangerously hot days in heat waves of the future. The urban heat island effect is particularly pronounced in

Tools to inform Baltimore tree planting

Summary:

- NIACS combined multiple datasets into one list for GBWC
- Each dataset (Tree Atlas, DC results) uses different methodologies to establish predictions
- Approaches have differing levels of uncertainty
- Requires local expertise and judgement when interpreting results!

GBWC's Climate-informed tree species list: Key terms.

~200 trees and cultivars organized by botanical name and common name

Washington DC urban tree results

- Adapt
- Zone suitability
- Vulnerability

USFS Tree Atlas results for the Greater Baltimore Urban region

- Adapt score
- Abundance
- Habitat change
- Capability

Results describe habitat suitability under a future with • Less warming RCP 4.5

High, more warming

RCP 8.5

GBWC Combined dataset

			Vulnerabilty of Washington DC Urban Trees						USFS Tree Atlas Results for the Greater Baltimore Urban Region							
			Climate change projection by end of century (2070-2099)							Climate char	nge projection	by end of century (2	070-2099)			
				Less w	arming	High emissions	more warming			Less wa	rming	High emissions, more warm				
				(RCP4.5	scenario)	(RCP8.5 scenario)				(RCP4.5 s	cenario)	(RCP8.5 s	cenario)			
Does this species have a climate projection?	BOTANICAL NAME	COMMON NAME	Planted Adapt	Zone Suitability Vulnerability		Zone Suitability	Vulnerability	Adapt score	Abundance	Habitat Change	Capability	Habitat Change	Capability			
DC Heat/Hardiness	Acer buergerianum	Trident Maple	High	Suitable	Low	Suitable	Low									
DC Heat/Hardiness	Acer campestre	Hedge Maple	High	Suitable	Low	Unsuitable	Moderate									
DC Heat/Hardiness	Acer campestre	Hedge Maple - 'Queen Elizabeth'														
DC Heat/Hardiness	Acer floridanum	Florida Maple														
Ν	Acer ginnale	Amur Maple	Medium	Unsuitable	Moderate-High	Unsuitable	Moderate-High									
Ν	Acer griseum	Paperbark Maple	Low	Suitable	Moderate	Unsuitable	High									
Baltimore Tree Atlas	Acer negundo	Boxelder	Medium	Suitable	Low-Moderate	Unsuitable	Moderate-High	High	Common	No change	Good	No change	Good			
DC Heat/Hardiness	Acer palmatum	Japanese Maple														
Baltimore Tree Atlas	Acer Rubrum	Red Maple	Medium	Suitable	Low-Moderate	Suitable	Low-Moderate	High	Abundant	Sm. dec.	Good	Sm. dec.	Good			
Ν	Acer rubrum 'Armstrong'	Armstrong Maple														
Ν	Acer Rubrum 'Autumn Blaze'	Red Maple 'Autumn Blaze'														
Baltimore Tree Atlas	Acer saccharinum	Silver Maple	Medium	Suitable	Low-Moderate	Unsuitable	Moderate-High	High	Rare	Sm. dec.	Poor	No change	Fair			
Ν	Acer saccharum	Sugar Maple	Medium	Suitable	Low-Moderate	Unsuitable	Moderate-High	High	Rare	Lg. inc.	Good	Lg. inc.	Good			
N	Acer saccharum 'Green Mountain'	Sugar Maple - 'Green Mountain'														
Ν	Acer saccharum 'Legacy'	Sugar Maple - 'Legacy'														
Baltimore Tree Atlas	Acer spicatum	Mountain Maple						High	Absent	Unknown	Unknown	Unknown	Unknown			
N	Acer Tataricum	Tatarian Maple														
N	Acortriflorum	Three El ower Maple														

What this data <u>can</u> and <u>can't</u> do

Can do -

- Describe regional habitat suitability for certain trees given climate change (from less warming to greater warming)
- Links to peer-reviewed, unbiased and scientific data on the topic
- Create connections to broader climate-informed thinking across the region through the NIACS urban effort.

Can't do -

- Tell you what to do.
 - These are model results and require additional expertise and judgement to determine site-level suitability

Additional reading: Urban tree species assessment

Read a technical description:

Brandt, Leslie A., Gary R. Johnson, Eric A. North, Jack Faje, and Annamarie Rutledge, "Vulnerability of Street Trees in Upper Midwest Cities to Climate Change" Frontiers in Ecology and Evolution (2021): 623. <u>https://doi.org/10.3389/fevo.2021.721831</u>

Thank you!

Contact us with any questions! Patricia Leopold (pleopold@mtu.edu) Danielle Shannon (dshannon@mtu.edu)

